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Past, present and future



Past

https://catonmat.net/ftp/simulating-physics-with-computers-richard-feynman.pdf

https://catonmat.net/ftp/simulating-physics-with-computers-richard-feynman.pdf


Present
Several companies building quantum hardwareWelcome to a Dream!
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Rigetti

Intel

Google

D-Wave

Qilimanjaro (Spain) And more in Europe, China, Australia, etc……..



Present
Different quantum computing frameworks

Source: https://quantumcomputingreport.com/review-of-the-cirq-quantum-software-framework/



Present
Quantum cloud services



Future
IBM’s quantum roadmap



Future



Why quantum computing?



Problems

Source: https://ispd.cc/ispd2022/slides/2021/protected/9_3_Stok.pdf



Are quantum computers “faster”?
Multiplication

Source: https://ispd.cc/ispd2022/slides/2021/protected/9_3_Stok.pdf



Are quantum computers “faster”?
Factorization

Source: https://ispd.cc/ispd2022/slides/2021/protected/9_3_Stok.pdf



Applications

• Chemestry, molecular simulation: drug discovery, new fertilizers, more 
efficient batteries


• Optimization: better financial models, transport optimization


• Machine learning: quantum machine learning



Quantum Computing and IBM Q: An Introduction            #IBMQ

Hard or memory intensive problems and 
quantum speedups

Quantum 
computing may 

provide a 
new path to 

solve some of 
the hardest or 
most memory 

intensive 
problems 

in business and 
science.

“Hard” Problems
For classical computing (NP)

Factoring

Simulating Quantum 
Mechanics

Material, 
Chemistry

Machine 
Learning

Optimization

13x7=?
937x947=? 91=? x ?

887339 = ? x ?

Possible with quantum 
computing

Problems

Source: https://indico.cern.ch/event/719844/contributions/3019718/attachments/1749768/2835637/CERN_Tavernelli4_l.pdf



How quantum computers work?



Quantum computers types

Source: https://indico.cern.ch/event/719844/contributions/3019718/attachments/1749768/2835637/CERN_Tavernelli4_l.pdf

Quantum Annealing Approximate NISQ-Comp.
Fault-tolerant Universal

Q-Comp.

Many ‘noisy’ qubits can be built; 
large problem class in optimization; 
amount of quantum speedup unclear

Optimization Problems
• Machine learning
• Fault analysis
• Resource optimization
• etc…

Hybrid quantum-classical approach;
already 50-100 “good” physical qubits 
could provide quantum speedup.

Simulation of Quantum Systems, 
Optimization
• Material discovery
• Quantum chemistry
• Optimization 

(logistics, time scheduling,…)
• Machine Learning

Execution of Arbitrary Quantum 
Algorithms
• Algebraic algorithms 

(machine learning, cryptography,…)
• Combinatorial optimization 
• Digital simulation of quantum systems

Proven quantum speedup;
error correction requires significant qubit 
overhead.

Surface Code: Error correction in a Quantum Computer

Types of Quantum Computing

Ivano Tavernelli  - ita@zurich.ibm.com

Noisy Intermediate-Scale Quantum



Quantum annealing
Adiabatic quantum computer

Source: https://indico.cern.ch/event/865287/attachments/1971786/3280301/Lecture_1_v1.pdf

Adiabatic Quantum Computer

12

H(s) = A(s)HB + B(s)HP

HB = Initial Hamiltonian, which ground state is easy to find 

HP =  Problem Hamiltonian, whose ground state encodes the 
solution to the problem

H(s) = Combined Hamiltonial to evolve slowly:
A(s) decrease smoothly and monotonically
B(s) increase smothly and monotonically

Li, R. Y., Felice, R. Di, Rohs, R., & Lidar, D. A. (2018). Quantum annealing versus classical machine learning applied to a simplified 
computational biology problem. Npj Quantum Information 2018 4:1, 4(1), 14. http://doi.org/10.1038/s41534-018-0060-8



Universal quantum computer
DiVincenzo’s Criteria 

• A scalable physical system with well characterized qubits. 


• The ability to initialize the state of the qubits to a simple fiducial  
state, such as |000....000> 


• Long relevant decoherence times, much longer than the gate  
operation time. 


• A “universal” set of quantum gates. 


• A qubit-specific measurement capability. 

DiVincenzo, D. P. (2000). The physical implementation of quantum computation. Fortschritte der Physik: Progress of Physics, 48(9‐11), 771-783.



Source: https://indico.cern.ch/event/719844/contributions/3019718/attachments/1749768/2835637/CERN_Tavernelli4_l.pdf

Inside an IBM Q quantum 
computing system

Microwave electronics
3K

0.9K

0.1K

0.015K

40K

Chip with 
superconducting
qubits and resonators 

PCB with the qubit chip 
at 15 mK protected from 
the environment by 
multiple shields

Refrigerator to cool 
qubits to 10 - 15 
mK with a mixture 
of 3He and 4He



https://youtu.be/zOGNoDO7mcU?t=650 https://youtu.be/zOGNoDO7mcU?t=1887

https://youtu.be/zOGNoDO7mcU?t=650
https://youtu.be/zOGNoDO7mcU?t=1887


Source: https://indico.cern.ch/event/719844/contributions/3019718/attachments/1749768/2835637/CERN_Tavernelli4_l.pdf

The power of quantum computing is more than the number 
of qubits

25

10,000

40,000

25

10,000

40,000

Quantum Volume depends upon

Number of physical QBs

Connectivity among QBs

Available hardware gate set

Error and decoherence of gates

Number of parallel operations



Fault-tolerant universal quantum computer



Quantum supremacy

https://youtu.be/-ZNEzzDcllU

https://youtu.be/-ZNEzzDcllU


Quantum information



Quantum information
Basic concepts

• Qubit


• Superposition


• Measurement


• Quantum operations


• Entanglement



https://youtu.be/zOGNoDO7mcU?t=156

https://youtu.be/zOGNoDO7mcU?t=156


Bit vs Qubit
2

FIG. 1. Illustration of a classical bit. The two different states
0 and 1 are represented by the position of a ball (upper or
lower shelf), or the orientation of a vector (up or down).

III. THE QUANTUM BIT (QUBIT)

We now turn to the simplest quantum mechanical sys-
tem, the quantum bit or qubit. We consider the descrip-
tion of the system in terms of states, its manipulation by
means of operations and measurements, and discuss the
resulting properties.

A. States

The qubit is the simplest quantum mechanical system
and generalizes the classical bit. We consider again a
two-level system, i.e. a system with one characteristic
property that can have two possible values. All other
properties are neglected or assumed to be fixed. In the
following, we will develop an abstract mathematical de-
scription in parallel with a simple pictorial representa-
tion. We believe that for teaching in class, the picto-
rial approach suffices, and calculations only need to be
considered exemplarily. However, we include a complete
mathematical description, as we think that this is valu-
able background information, and is simple enough to be
taught in class if desired.

We notate the two states as

|0i =
✓

1
0

◆
, |1i =

✓
0
1

◆
(1)

A central new feature as compared to a classical bit is
the possibility to have superposition states. That is, a
qubit can be in an arbitrary superposition of the two ba-
sis states |0i and |1i. The mathematical description is in
terms of a sum of the two basis vectors, weighted by (com-
plex) amplitudes. This corresponds to a 2-dimensional
vector with complex coefficients, which is an element of
the vector space 2. Such a superposition might be in-
terpreted as an interference of the two possibilities. The
state is described as

| i = ↵|0i+ �|1i =
✓
↵
�

◆
. (2)

Let us consider a second vector, |�i = �|0i+ �|1i. Then,
the scalar product in 2 is defined as h |�i = ↵⇤�+�⇤�,

where ⇤ denotes complex conjugation. In order to allow
for a meaningful interpretation of measurements in terms
of probabilities –as we will discuss in detail in Sec. III C–
quantum states need to be normalized, (h | i = |↵|2 +
|�|2 = 1). In addition, it turns out that a global phase is
irrelevant, as all observable quantities do not depend on
its value. Hence ↵ in Eq. 2 can be chosen real. It follows
that | i can be written with help of two real parameters,

| i = cos
#

2
|0i+ sin

#

2
ei'|1i. (3)

The quantum state of a qubit can be visualized as a vec-
tor of length 1 on the Bloch sphere, see Fig. 2. The
angles #,' correspond to the polar and azimuthal angle
of spherical coordinates. The two basis states |0i and
|1i are represented by # = 0 and # = ⇡, respectively,
pointing in +z [-z] direction (see Fig. 3). Notice that on
the Bloch sphere representation, orthogonal vectors are
antiparallel.

FIG. 2. Graphical representation of possible states of a single
qubit using the Bloch sphere. Quantum mechanical states are
described by vectors of length one in the 3-dimensional space,
and are characterized by the two angles #,' of the spherical
coordinates.

FIG. 3. Illustration of the two basis states |0i and |1i on the
Bloch sphere. Orthogonal states are antiparallel on the Bloch
sphere representation.

It is now straightforward to depict quantum superpo-
sition states. For # = ⇡/2 and ' = 0 [' = ⇡] one obtains

Classical bit
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Qubit

Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.



Superposition

Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.
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e.g. the states

|0xi =
1p
2
(|0i+ |1i) (4)

|1xi =
1p
2
(|0i � |1i),

which point in ±x direction on the Bloch sphere (see Fig.
4).

FIG. 4. Bloch sphere representation of different superposition
states.

It is important to recall that superposition states do
not exist for classical systems, and hence they do not have
a simple, intuitive meaning. Classical states correspond
to a vector pointing in ±z direction (a ball in upper or
lower shelf). Using this picture, a quantum superposition
state |0xi corresponds to a case where the ball is between
the two shelves - neither in the upper nor lower shelf, but
somewhat in both of them simultaneously. The actual
meaning of this will become clearer once we discuss the
measurement process in Sec. III C.

A qubit is an abstract object that may have various
physical realizations, which we will discuss in more detail
in Sec. IV. It is the basic unit of quantum information,
playing a central role in quantum information theory [7].
When introducing quantum states at high school level,
it is sufficient to restrict oneself to real coefficients, i.e.
ei' = 1 and # 2 [0, 2⇡). In this way possible mathemati-
cal difficulties with complex numbers and scalar products
can be avoided. The Bloch-sphere picture reduces to the
unit circle, corresponding to unit vectors in the plane that
can be parameterized by a single angle. Orthogonal vec-
tors are by convention antiparallel, since we use the angle
#/2 in our description of states. The purpose of this con-
vention will become clear when we graphically illustrate
the measurement process. Nevertheless, some care and
a thorough discussion is required, e.g. when considering
qubits realized by the polarization of a single photon.

B. Operations

The quantum state of a qubit can be manipulated or
evolve in time. This corresponds to a rotation of the
state vector on the Bloch sphere, and is mathematically
described by a unitary operation, a 2⇥ 2 matrix U from
the group SU(2), with U†U = UU† = where † de-
notes complex conjugation and transposition of the ma-
trix. The state after the unitary operation is given by

U | i. If one uses the bra-ket notation, one can write a
unitary operation in the form U =

P1
i,j=0 uij |iihj|, where

uij are the elements of the matrix.
A rotation with angle � among an arbitrarily oriented

axis specified by a normalized vector a = (ax, ay, az)T is
given by

U = exp(i��a) = cos � + i sin ��a (5)

where

�a = a · � = ax�x + ay�y + az�z (6)

and we use the Pauli matrices

�x =

✓
0 1
1 0

◆
,�y =

✓
0 �i
i 0

◆
,�z =

✓
1 0
0 �1

◆
. (7)

For instance, a rotation among the y-axis with an angle
# = �2� is described by the operation

Uy(�) = exp(i��y) =

✓
cos � sin �
� sin � cos �

◆
(8)

When restricting to real states, this operation is of par-
ticular importance. When applied to an initial states |0i
we have

Uy(�)|0i = cos �|0i � sin �|1i, (9)

which corresponds to a rotation of the vector among the
unit circle, where all possible states can be reached start-
ing from the initial state |0i (see Fig. 5). Similarly, using
a rotation among an arbitrary axis, all states on the Bloch
sphere can be generated. Notice that any single-qubit ro-
tation can be decomposed into rotations among the x, y
and z axis.

FIG. 5. A unitary operation acting on a qubit corresponds
to a rotation of the state vector with a certain angle among
a fixed axes. Here, the rotation Uy(�) acting on the initial
state |0i is depicted, corresponding to a rotation with angle
# = �2� among the y-axes.

C. Measurements

The presumably most striking and counterintuitive fea-
ture of quantum mechanics is the measurement process.
All properties of a quantum state can – in contrast to



Measurement

Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.
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+z or �z direction after the measurement. In general,
the angle between the state vector and the orientation of
the slit determines the measurement probabilities, which
is explicitly expressed in Eq. 12.

A slit pointing in x-direction corresponds to a measure-
ment of the observable �x, leaving the system in either
the state |0xi (measurement result +1) or |1xi (measure-
ment result �1) after the measurement (see Fig. 8). If
the initial state was |0xi, i.e. a vector pointing in +x di-
rection, it will simply pass through the slit, leading to the
deterministic outcome +1, leaving the state unchanged.

This visualization makes it easy to grasp that it is im-
possible to determine the initial state of the system with
a single measurement. The slit limits the view of the
state vector to one direction on the Bloch sphere. In ad-
dition, probabilistic measurement results as well as the
state change due to the measurement are made plausible.
However, we should emphasize that the slit just illustrates
the measurement process, and does not have any direct
physical meaning.

FIG. 6. Illustration of a z-measurement (observable �z), cor-
responding to orientation of the slit in z-direction. The mea-
surement determines whether the state vector is oriented in
+z or �z direction (measurement result |0i or |1i).

FIG. 7. Illustration of a z-measurement (observable �z) per-
formed on a qubit in state | i = cos #

2 |0i+sin #
2 |1i. The state

vector is not oriented in slit direction, and hence the measure-
ment process enforces a rotation of the vector in positive or
negative z-direction. This leads to a random measurement
result |0i or |1i, with probability p0 = cos2 #

2 and p1 = sin2 #
2 ,

and a change of the state vector after the measurement.

FIG. 8. Illustration of a x-measurement (observable �x) per-
formed on a qubit in state | i = cos #

2 |0i+ sin #
2 |1i. The slit

is oriented in x-direction. The measurement process enforces
a rotation of the vector in positive or negative x-direction.
This leads to a random measurement result |0xi or |1xi, with
probability p0 = 1/2 + cos #

2 sin #
2 and p0 = 1/2� cos #

2 sin #
2 ,

and a change of the state vector after the measurement.

F. Classical mixtures vs. quantum superpositions

We now discuss the difference between classical mix-
tures and a quantum mechanical ensembles of superposi-
tion states. Also classical system can show a stochastic
behavior under measurements, however, the underlying
reason is completely different compared to the quantum
mechanical case. To illustrate this, let us consider an en-
semble of N classical bits, where each bit has a fixed but
random value 0 or 1. We are hence dealing with a situa-
tion where each bit has a fixed value 0 or 1, however we
do not know this value and hence call it random. When
performing measurements on these N bits, we will find
random outcomes. The statistics of the measurement is
such that we will find the value 0 or 1 in approximately
N/2 cases. Such a situation can be described using a
probability distribution for the possible bit values, which
expresses our lack of knowledge about the situation in
question. Such a description is e.g. applied in statistical
mechanics. One obtains exactly the same measurement
results when considering an ensemble of random quan-
tum bits, where each of the qubits is in either the state
|0i or |1i with equal probability (Fig. 9, first line). This
is a so-called mixed state, described by a density ma-
trix ⇢ = q0|0ih0| + q1|1ih1|. Mixed states can either be
visualized as shown in the figure, or by just one Bloch
sphere with a single vector of length  1. In our ex-
ample with q0 = q1 = 1/2, where the probabilities are
equal for both states, the length of the effective Bloch
vector is 0, corresponding to a completely mixed state.
This means that measurements in any basis lead to com-
pletely random outcomes, which can be seen by noting
that = (|0aih0a|+ |1aih1a|)/2 for any a .

Let us now compare this with a situation where we have
N qubits, each of them in the same quantum superposi-
tion state |0xi = 1/

p
2(|0i + |1i) (Fig. 9, second line).

If we perform a z-measurement on each of the qubits,
the result will be random, where we find the results |0i
and |1i with probability 1/2 each. On average, we ob-



Unitary operation
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e.g. the states

|0xi =
1p
2
(|0i+ |1i) (4)

|1xi =
1p
2
(|0i � |1i),

which point in ±x direction on the Bloch sphere (see Fig.
4).

FIG. 4. Bloch sphere representation of different superposition
states.

It is important to recall that superposition states do
not exist for classical systems, and hence they do not have
a simple, intuitive meaning. Classical states correspond
to a vector pointing in ±z direction (a ball in upper or
lower shelf). Using this picture, a quantum superposition
state |0xi corresponds to a case where the ball is between
the two shelves - neither in the upper nor lower shelf, but
somewhat in both of them simultaneously. The actual
meaning of this will become clearer once we discuss the
measurement process in Sec. III C.

A qubit is an abstract object that may have various
physical realizations, which we will discuss in more detail
in Sec. IV. It is the basic unit of quantum information,
playing a central role in quantum information theory [7].
When introducing quantum states at high school level,
it is sufficient to restrict oneself to real coefficients, i.e.
ei' = 1 and # 2 [0, 2⇡). In this way possible mathemati-
cal difficulties with complex numbers and scalar products
can be avoided. The Bloch-sphere picture reduces to the
unit circle, corresponding to unit vectors in the plane that
can be parameterized by a single angle. Orthogonal vec-
tors are by convention antiparallel, since we use the angle
#/2 in our description of states. The purpose of this con-
vention will become clear when we graphically illustrate
the measurement process. Nevertheless, some care and
a thorough discussion is required, e.g. when considering
qubits realized by the polarization of a single photon.

B. Operations

The quantum state of a qubit can be manipulated or
evolve in time. This corresponds to a rotation of the
state vector on the Bloch sphere, and is mathematically
described by a unitary operation, a 2⇥ 2 matrix U from
the group SU(2), with U†U = UU† = where † de-
notes complex conjugation and transposition of the ma-
trix. The state after the unitary operation is given by

U | i. If one uses the bra-ket notation, one can write a
unitary operation in the form U =

P1
i,j=0 uij |iihj|, where

uij are the elements of the matrix.
A rotation with angle � among an arbitrarily oriented

axis specified by a normalized vector a = (ax, ay, az)T is
given by

U = exp(i��a) = cos � + i sin ��a (5)

where

�a = a · � = ax�x + ay�y + az�z (6)

and we use the Pauli matrices

�x =

✓
0 1
1 0

◆
,�y =

✓
0 �i
i 0

◆
,�z =

✓
1 0
0 �1

◆
. (7)

For instance, a rotation among the y-axis with an angle
# = �2� is described by the operation

Uy(�) = exp(i��y) =

✓
cos � sin �
� sin � cos �

◆
(8)

When restricting to real states, this operation is of par-
ticular importance. When applied to an initial states |0i
we have

Uy(�)|0i = cos �|0i � sin �|1i, (9)

which corresponds to a rotation of the vector among the
unit circle, where all possible states can be reached start-
ing from the initial state |0i (see Fig. 5). Similarly, using
a rotation among an arbitrary axis, all states on the Bloch
sphere can be generated. Notice that any single-qubit ro-
tation can be decomposed into rotations among the x, y
and z axis.

FIG. 5. A unitary operation acting on a qubit corresponds
to a rotation of the state vector with a certain angle among
a fixed axes. Here, the rotation Uy(�) acting on the initial
state |0i is depicted, corresponding to a rotation with angle
# = �2� among the y-axes.

C. Measurements

The presumably most striking and counterintuitive fea-
ture of quantum mechanics is the measurement process.
All properties of a quantum state can – in contrast to

Pauli matrices



Entanglement
Multiple qubits

Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.

3

e.g. the states

|0xi =
1p
2
(|0i+ |1i) (4)

|1xi =
1p
2
(|0i � |1i),

which point in ±x direction on the Bloch sphere (see Fig.
4).

FIG. 4. Bloch sphere representation of different superposition
states.

It is important to recall that superposition states do
not exist for classical systems, and hence they do not have
a simple, intuitive meaning. Classical states correspond
to a vector pointing in ±z direction (a ball in upper or
lower shelf). Using this picture, a quantum superposition
state |0xi corresponds to a case where the ball is between
the two shelves - neither in the upper nor lower shelf, but
somewhat in both of them simultaneously. The actual
meaning of this will become clearer once we discuss the
measurement process in Sec. III C.

A qubit is an abstract object that may have various
physical realizations, which we will discuss in more detail
in Sec. IV. It is the basic unit of quantum information,
playing a central role in quantum information theory [7].
When introducing quantum states at high school level,
it is sufficient to restrict oneself to real coefficients, i.e.
ei' = 1 and # 2 [0, 2⇡). In this way possible mathemati-
cal difficulties with complex numbers and scalar products
can be avoided. The Bloch-sphere picture reduces to the
unit circle, corresponding to unit vectors in the plane that
can be parameterized by a single angle. Orthogonal vec-
tors are by convention antiparallel, since we use the angle
#/2 in our description of states. The purpose of this con-
vention will become clear when we graphically illustrate
the measurement process. Nevertheless, some care and
a thorough discussion is required, e.g. when considering
qubits realized by the polarization of a single photon.

B. Operations

The quantum state of a qubit can be manipulated or
evolve in time. This corresponds to a rotation of the
state vector on the Bloch sphere, and is mathematically
described by a unitary operation, a 2⇥ 2 matrix U from
the group SU(2), with U†U = UU† = where † de-
notes complex conjugation and transposition of the ma-
trix. The state after the unitary operation is given by

U | i. If one uses the bra-ket notation, one can write a
unitary operation in the form U =

P1
i,j=0 uij |iihj|, where

uij are the elements of the matrix.
A rotation with angle � among an arbitrarily oriented

axis specified by a normalized vector a = (ax, ay, az)T is
given by

U = exp(i��a) = cos � + i sin ��a (5)

where

�a = a · � = ax�x + ay�y + az�z (6)

and we use the Pauli matrices

�x =

✓
0 1
1 0

◆
,�y =

✓
0 �i
i 0

◆
,�z =

✓
1 0
0 �1

◆
. (7)

For instance, a rotation among the y-axis with an angle
# = �2� is described by the operation

Uy(�) = exp(i��y) =

✓
cos � sin �
� sin � cos �

◆
(8)

When restricting to real states, this operation is of par-
ticular importance. When applied to an initial states |0i
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It is important to recall that superposition states do
not exist for classical systems, and hence they do not have
a simple, intuitive meaning. Classical states correspond
to a vector pointing in ±z direction (a ball in upper or
lower shelf). Using this picture, a quantum superposition
state |0xi corresponds to a case where the ball is between
the two shelves - neither in the upper nor lower shelf, but
somewhat in both of them simultaneously. The actual
meaning of this will become clearer once we discuss the
measurement process in Sec. III C.

A qubit is an abstract object that may have various
physical realizations, which we will discuss in more detail
in Sec. IV. It is the basic unit of quantum information,
playing a central role in quantum information theory [7].
When introducing quantum states at high school level,
it is sufficient to restrict oneself to real coefficients, i.e.
ei' = 1 and # 2 [0, 2⇡). In this way possible mathemati-
cal difficulties with complex numbers and scalar products
can be avoided. The Bloch-sphere picture reduces to the
unit circle, corresponding to unit vectors in the plane that
can be parameterized by a single angle. Orthogonal vec-
tors are by convention antiparallel, since we use the angle
#/2 in our description of states. The purpose of this con-
vention will become clear when we graphically illustrate
the measurement process. Nevertheless, some care and
a thorough discussion is required, e.g. when considering
qubits realized by the polarization of a single photon.

B. Operations

The quantum state of a qubit can be manipulated or
evolve in time. This corresponds to a rotation of the
state vector on the Bloch sphere, and is mathematically
described by a unitary operation, a 2⇥ 2 matrix U from
the group SU(2), with U†U = UU† = where † de-
notes complex conjugation and transposition of the ma-
trix. The state after the unitary operation is given by

U | i. If one uses the bra-ket notation, one can write a
unitary operation in the form U =

P1
i,j=0 uij |iihj|, where

uij are the elements of the matrix.
A rotation with angle � among an arbitrarily oriented

axis specified by a normalized vector a = (ax, ay, az)T is
given by

U = exp(i��a) = cos � + i sin ��a (5)

where

�a = a · � = ax�x + ay�y + az�z (6)

and we use the Pauli matrices
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For instance, a rotation among the y-axis with an angle
# = �2� is described by the operation

Uy(�) = exp(i��y) =
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cos � sin �
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(8)

When restricting to real states, this operation is of par-
ticular importance. When applied to an initial states |0i
we have

Uy(�)|0i = cos �|0i � sin �|1i, (9)

which corresponds to a rotation of the vector among the
unit circle, where all possible states can be reached start-
ing from the initial state |0i (see Fig. 5). Similarly, using
a rotation among an arbitrary axis, all states on the Bloch
sphere can be generated. Notice that any single-qubit ro-
tation can be decomposed into rotations among the x, y
and z axis.
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Quantum circuit

Source: https://qiskit.org/textbook/ch-algorithms/defining-quantum-circuits.html



Quantum circuit

Source: https://algassert.com/post/1716
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Quantum Machine Learning
• AI/ML already uses special-purpose processors: GPUs, TPUs, ASICs

• Quantum computers (QPUs) could be used as special-purpose AI 
accelerators

• May enable training of previously intractable models

Source: https://cs269q.stanford.edu/lectures/lecture14.pdf



Source: https://cs269q.stanford.edu/lectures/lecture14.pdf

New AI models
• Quantum computing can also lead to 

new machine learning models

• Examples currently being studied are:

- Kernel methods

- Boltzmann machines

- Tensor Networks

- Variational circuits

- Quantum Neural Networks
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