### An Introduction to Quantum Computing Fabio A. González **Universidad Nacional de Colombia**

**Quantum Computer Programming 2021-2** 





# Past, present and future

### Past



1982

### A Recent History 1994 2000 Eddie Farhi at MIT Peter Shor develops algorithm that could be develops idea for 2013 used for quantum codeadiabatic quantum **Richard Feynman** D-Wave Two, breaking computing envisions quantum 512 qubits computing .................... 1999 2010 1985 D-Wave Systems D-Wave One: David Deutsch describes founded by Geordie first commercial universal quantum Rose quantum computer, computer 128 qubits





© 2014 D-Wave Systems Inc. All Rights Reserved

LinkedIn SlideShare: 17 Nov 2014 – "Quantum Computing: Welcome to the Future" by Vern Brownell CEO

https://catonmat.net/ftp/simulating-physics-with-computers-richard-feynman.pdf

DIMOVE

The Questo in Long Longer

### Present Several companies building quantum hardware





# **Present**Different quantum computing frameworks



Source: https://quantumcomputingreport.com/review-of-the-cirq-quantum-software-framework/

| Present<br>Quantum cloud services |                                                                            |                                                                   |                                               | Home / Services                                                                                  |        |                                                                                                             | ZURE       Explore ~       Products ~       Solutions ~       Pricing ~       Partners ~       Resources ~       Free accounts         Services       /       Azure Quantum       Azure Quan |                |                             | Free account       |            |           |  |
|-----------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|--------------------|------------|-----------|--|
| IBM Quantum                       |                                                                            |                                                                   |                                               | Azure Quantum       PREVIEW         Experience quantum impact today on Azure                     |        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                             |                    |            |           |  |
|                                   | Graphically build circuits with IBM Quantum Composer                       | Develop quantum experiments in IBM Quantum Lab                    | Jump back in:<br>ブ entanglement example.ipynb | API token (i)<br>*********<br>View account detail                                                | S<br>S |                                                                                                             | Start free<br>Azure Quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Login to Azure | Quantum<br>rerview Features | s Customer stories | 5 Pricing  | FAQs      |  |
|                                   | Run on circuits & algorithm<br>IBM Quantum serv<br>4 7 5<br>Your Your Your | Run on circuits & algorithms via View all<br>IBM Quantum services |                                               | Recent jobs          O       6         Pending       Completed                                   |        | Solutions Pri                                                                                               | cing Docume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | entation Learn | Partner Network             | AWS Marketplace    | Customer   | Enablemer |  |
|                                   | programs systems simulators                                                | igrams systems simulators services                                |                                               | No pending jobs                                                                                  |        | Amazon Braket Overview Features Pricing FAQs Getting Started Hardware Providers -<br>« Quantum Technologies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                             |                    | roviders 👻 |           |  |
|                                   |                                                                            |                                                                   |                                               | Amazon Braket Accelerate quantum computing research Get Started with Amazon Braket Contact Sales |        |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                             |                    |            |           |  |

### **Future IBM's quantum roadmap**

### Scaling IBM Quantum technology

| IBM Q System One | (Released)  | (In development) |  |  |
|------------------|-------------|------------------|--|--|
| 2019             | 2020        | 2021             |  |  |
| 27 qubits        | 65 qubits   | 127 qubits       |  |  |
| Falcon           | Hummingbird | Eagle            |  |  |







### Next family of IBM Quantum systems and beyond 2022 2023 Path to 1 million qubits 433 qubits 1,121 qubits and beyond Osprey Condor Large scale systems Key advancement Key advancement Key advancement Miniaturization of components Integration Build new infrastructure, quantum error correction

### Future

### Development Roadmap



### IBM Quantum

# Why quantum computing?

### Problems

Problems we can't address adequately today

> Problems we can address today

Source: https://ispd.cc/ispd2022/slides/2021/protected/9\_3\_Stok.pdf



Problems we can address with quantum

### Are quantum computers "faster"? Multiplication



Source: https://ispd.cc/ispd2022/slides/2021/protected/9\_3\_Stok.pdf

Classical Cost of multiplication [1]: ~ 0.0025s Quantum Cost of multiplication [2]: ~ 75.0000s

[1]: A. Emerencia,. "Multiplying huge integers using fourier transforms." (2007).

[2]: C. Gidney, Craig, and M. Ekerå. arXiv preprint arXiv:1905.09749 (2019).

### Are quantum computers "faster"? Factorization



Source: https://ispd.cc/ispd2022/slides/2021/protected/9\_3\_Stok.pdf

**Classical Cost of** factoring [1]: ~ 4.7 billion CPU years

(largest factored number RSA-768 bit for approx. 1500 CPU years)

[1]: Kleinjung, Thorsten, et al. "Factorization of a 768-bit RSA modulus." Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2010.

Quantum Cost of factoring [2]:  $\sim$  8 hours

[2]: C. Gidney, Craig, and M. Ekerå. arXiv preprint arXiv:1905.09749 (2019).

### Applications

- Chemestry, molecular simulation: drug discovery, new fertilizers, more efficient batteries
- Optimization: better financial models, transport optimization
- Machine learning: quantum machine learning

### Problems

### "Hard" Problems For classical computing (NP)

13x7=? 937x947=?

Simulating Quantum Source: https://indico.cern.ch/event/719844/contributions/3019718/attachments/1749768/2835637/CERN\_Tavernelli4\_pdf ICS

### Factoring

Possible with quantum computing

> 91=? x ? 887339 = ? x ?

Material, Chemistry

Machine Learning

Optimization



# How quantum computers work?

### Quantum computers types

### **Quantum Annealing**

### **Optimization Problems**

- Machine learning
- Fault analysis
- Resource optimization
- etc...  $\bullet$





Many 'noisy' qubits can be built; large problem class in optimization; amount of quantum speedup unclear

### Approximate NISQ-Comp.

### Simulation of Quantum Systems, Optimization

- Material discovery
- Quantum chemistry
- Optimization  $\bullet$ (logistics, time scheduling,...)
- Machine Learning  $\bullet$



Hybrid quantum-classical approach; already 50-100 "good" physical qubits could provide quantum speedup.



### Noisy Intermediate-Scale Quantum

### **Fault-tolerant Universal** Q-Comp.

### **Execution of Arbitrary Quantum** Algorithms

- Algebraic algorithms (machine learning, cryptography,...)
- Combinatorial optimization •
- Digital simulation of quantum systems



Surface Code: Error correction in a Quantum Computer

Proven quantum speedup; error correction requires significant qubit overhead.





### Quantum annealing Adiabatic quantum computer

ntum

solution to the problem

H(s) = Combined Hamiltonial to evolve slowly:

S = 0

- $H_{B}$  = Initial Hamiltonian, which ground state is easy to find
- $H_{P}$  = Problem Hamiltonian, whose ground state encodes the
  - A(s) decrease smoothly and monotonically B(s) increase smothly and monotonically
    - $H(s) = A(s)H_{B} + B(s)H_{P}$



Source: https://indico.cern.ch/event/865287/attachments/1971786/3280301/Lecture\_1\_v1.pdf

### Universal quantum computer **DiVincenzo's Criteria**

- A scalable physical system with well characterized qubits.
- The ability to initialize the state of the qubits to a simple fiducial state, such as |000....000>
- Long relevant decoherence times, much longer than the gate operation time.
- A "universal" set of quantum gates.
- A qubit-specific measurement capability.

DiVincenzo, D. P. (2000). The physical implementation of quantum computation. Fortschritte der Physik: Progress of Physics, 48(9-11), 771-783.

# Inside an IBM Q quantum computing system

### Microwave electronics



Source: https://indico.cern.ch/event/719844/contributions/3019718/attachments/1749768/2835637/CERN\_Tavernelli4\_I.pdf



Refrigerator to cool qubits to 10 - 15 mK with a mixture of <sup>3</sup>He and <sup>4</sup>He



PCB with the qubit chip at 15 mK protected from the environment by multiple shields



Chip with superconducting qubits and resonators



### The Quantum Era of Accelerated Discovery

Dario Gil, Ph.D. Director of IBM Research

### https://youtu.be/zOGNoDO7mcU?t=650

### https://youtu.be/zOGNoD07mcU?t=1887

IBM Quant

### The power of quantum computing is more than the number of qubits

Improving the error rate will result in a more powerful **Quantum Computer** 

### Quantum Volume depends upon

Number of physical QBs

Connectivity among QBs

Available hardware gate set

Error and decoherence of gates

Number of parallel operations



### Fault-tolerant universal quantum computer



"Quantum computing in the NISQ era and beyond" Preskill, 2018 https://arxiv.org/abs/1801.00862

- Noisy Intermediate Scale Quantum
  - - Quantum chemistry

### Quantum supremacy

### Article



# Quantum information

### Quantum information **Basic concepts**

- Qubit
- Superposition
- Measurement
- Quantum operations
- Entanglement

### The Quantum Era of Accelerated Discovery

Dario Gil, Ph.D. Director of IBM Research



### Bit vs Qubit

### Classical bit



Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.

### Qubit



### Superposition



$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \left( \begin{array}{c} \alpha\\ \beta \end{array} 
ight)$$

### Neasurement



Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \left(\begin{array}{c} \alpha\\ \beta\end{array}\right)$$

### $p_0 = \langle \psi | 0 \rangle \langle 0 | \psi \rangle = |\langle 0 | \psi \rangle|^2 = |\alpha|^2,$ $p_1 = \langle \psi | 1 \rangle \langle 1 | \psi \rangle = |\langle 1 | \psi \rangle|^2 = |\beta|^2.$



### Unitary operation



Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.

### $U^{\dagger}U = UU^{\dagger} = 1$

### Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

### **Entanglement** Multiple qubits



Dür, W., & Heusler, S. (2013). What we can learn about quantum physics from a single qubit. arXiv preprint arXiv:1312.1463.

superposition of 2<sup>n</sup> basis states



### Entanglement Measurement











# How to program a quantum computer?

### QISKit: Basic workflow

At the highest level, quantum programming in QISKit is broken up into three parts:

- **Building** quantum circuits 1.
- **Compiling** quantum circuits to run on a specific 2. backend
- **Executing** quantum circuits on a backend and 3. analyzing results

**Important:** Step 2 (compiling) can be done automatically so that a basic user only needs to deal with steps 1 and 3.

Panagiotis Barkoutsos - bpa@zurich.ibm.com





### QISKit: Basic workflow

At the highest level, quantum programming in QISKit is broken up into three parts:

```
[python3] $ pip install qiskit
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, Aer, execute
q = QuantumRegister(2)
c = ClassicalRegister(2)
qc = QuantumCircuit(q, c)
qc.h(q[0])
qc.cx(q[0], q[1])
qc.measure(q, c)
backend = Aer.get_backend('qasm_simulator')
job_sim = execute(qc, backend)
sim_result = job_sim.result()
print(sim_result.get_counts(qc))
```

Panagiotis Barkoutsos - bpa@zurich.ibm.com

Source: https://indico.cern.ch/event/719844/contributions/3019718/attachments/1749768/2835637/CERN\_Tavernelli4\_I.pdf





### Quantum circuit



Source: https://qiskit.org/textbook/ch-algorithms/defining-quantum-circuits.html

### Quantum circuit



Source: https://algassert.com/post/1716

### The Quantum Era of Accelerated Discovery

Dario Gil, Ph.D. Director of IBM Research



# Quantum machine learning

# The Quantum Era of Accelerated Discovery

Dario Gil, Ph.D. Director of IBM Research



### **Quantum machine learning** Number of papers per year

| Documents by year |      |      |      |      |      |  |  |  |
|-------------------|------|------|------|------|------|--|--|--|
|                   | 1000 |      |      |      |      |  |  |  |
|                   | 800  |      |      |      |      |  |  |  |
|                   |      |      |      |      |      |  |  |  |
| nents             | 600  |      |      |      |      |  |  |  |
| Docum             | 400  |      |      |      |      |  |  |  |
|                   |      |      |      |      |      |  |  |  |
|                   | 200  |      |      |      |      |  |  |  |
|                   | 0    |      |      |      |      |  |  |  |
|                   | Ŭ    | 1991 | 1994 | 1997 | 2000 |  |  |  |



# **Quantum Machine Learning**

- AI/ML already uses special-purpose processors: GPUs, TPUs, ASICs
- Quantum computers (QPUs) could be used as special-purpose Al accelerators
- May enable training of previously intractable models





Source: https://cs269q.stanford.edu/lectures/lecture14.pdf



# New Al models

- Quantum computing can also lead to new machine learning models
- Examples currently being studied are:
- Kernel methods
- Boltzmann machines
- Tensor Networks
- Variational circuits
- Quantum Neural Networks



Layer  $\mathcal{L}$ 





### QML at MindLab

Journal of the Physical Society of Japan 90, 044002 (2021)

https://doi.org/10.7566/JPSJ.90.044002

### **Classification with Quantum Measurements**

Fabio A. González<sup>1\*</sup>, Vladimir Vargas-Calderón<sup>2</sup>, and Herbert Vinck-Posada<sup>2</sup>

<sup>1</sup>MindLab Research Group, Departamento de Ingeniería de Sistemas e Industrial, Universidad Nacional de Colombia, Bogotá, Colombia <sup>2</sup>Grupo de Superconductividad y Nanotecnología, Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia

### Training

### Prediction









### QML at MindLab Implementation in Qiskit



### Prediction



### Training state preparation

### **Execution results**





### QML at MindLab Implementation in Qiskit



Exact circuit simulator







Noisy circuit simulator

IBM Bogotá Quantum device

## Gracias! fagonzalezo@unal.edu.co http://mindlaboratory.org

machine learning perception and discovery

