An Introduction to Quantum Computing

Fabio A. González
Universidad Nacional de Colombia

Quantum Computer Programming 2021-2

Past, present and future

Past

Linkedln SlideShare: 17 Nov 2014 - "Quantum Computing: Welcome to the Future" by Vern Brownell CEO https://catonmat.net/ftp/simulating-physics-with-computers-richard-feynman.pdf

Present

Several companies building quantum hardware

Present

Different quantum computing frameworks

Present

Quantum cloud services

Home / Services / Azure Quantum

Azure Quantum
 PREVIEW

Experience quantum impact today on Azure

Start free

Login to Azure Quantum

Azure Quantum $\vee \quad$ Product overview Features Customer stories Pricing FAQs
aws
Products
Solutions Pricing Documentation Learn Partner Network AWS Marketplace Customer EnablemeI
Amazon Braket Overview Features Pricing FAQs Getting Started Hardware Providers
« Quantum Technologies

Amazon Braket
Accelerate quantum computing research

```
Get Started with Amazon Braket
```

Contact Sales

Future

IBM's quantum roadmap

Scaling IBM Quantum technology

Future

Development Roadmap

Why quantum computing?

Problems

Are quantum computers "faster"?

Multiplication

How long does it take to
multiply 2048 bit
integers?

Classical Cost of multiplication [1]:
$\sim 0.0025 \mathrm{~s}$
[1]: A. Emerencia,. "Multiplying huge integers using fourier transforms." (2007).

Quantum Cost of multiplication [2]:
~75.0000s

Are quantum computers "faster"?

Factorization

$$
N=p * q
$$

How long does it take to
factor 2048 bit integers ?

Classical Cost of factoring [1]:
~ 4.7 billion CPU years
(largest factored number RSA768 bit for approx. 1500 CPU years)
[1]: Kleinjung, Thorsten, et al. "Factorization of a 768-bit RSA modulus." Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2010

Quantum Cost of
factoring [2]:
~ 8 hours
[2]: C. Gidney, Craig, and M. Ekerå. arXiv preprint arXiv:1905.09749 (2019).

Applications

- Chemestry, molecular simulation: drug discovery, new fertilizers, more efficient batteries
- Optimization: better financial models, transport optimization
- Machine learning: quantum machine learning

Problems

Simulating Quantum

How quantum computers work?

Quantum computers types

Quantum Annealing

Optimization Problems

- Machine learning
- Fault analysis
- Resource optimization
- etc..

classical annealing
quantum tunneling
范

configuration/path

Many 'noisy' qubits can be built; large problem class in optimization; amount of quantum speedup unclear

Approximate NISQ Comp.
Simulation of Quantum Systems, Optimization

- Material discovery
- Quantum chemistry
- Optimization
(logistics, time scheduling,...)
- Machine Learning

Hybrid quantum-classical approach; already 50-100 "good" physical qubits could provide quantum speedup.

Fault-tolerant Universal

 Q-Comp.
Execution of Arbitrary Quantum

 Algorithms- Algebraic algorithms (machine learning, cryptography,...)
- Combinatorial optimization
- Digital simulation of quantum systems

Surface Code: Error correction in a Quantum Computer

Proven quantum speedup;
error correction requires significant qubit overhead.

Quantum annealing

Adiabatic quantum computer

$H_{B}=$ Initial Hamiltonian, which ground state is easy to find
$H_{P}=$ Problem Hamiltonian, whose ground state encodes the solution to the problem
$\mathrm{H}(\mathrm{s})=$ Combined Hamiltonial to evolve slowly:
$A(s)$ decrease smoothly and monotonically
$B(s)$ increase smothly and monotonically

Universal quantum computer DiVincenzo's Griteria

- A scalable physical system with well characterized qubits.
- The ability to initialize the state of the qubits to a simple fiducial state, such as |000....000>
- Long relevant decoherence times, much longer than the gate operation time.
- A "universal" set of quantum gates.
- A qubit-specific measurement capability.

Inside an IBM Q quantum computing system

Microwave electronics

Refrigerator to cool qubits to 10-15 mK with a mixture of ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$

[^0]

Chip with superconducting qubits and resonators

The Quantum Era of Accelerated Discovery

Dario Gil, Ph.D.
Director of IBM Research

Fault-tolerant universal quantum computer

Quantum supremacy

Article

Quantum supremacy using a programmable superconducting processor

Quantum information

Quantum information

Basic concepts

- Qubit
- Superposition
- Measurement
- Quantum operations
- Entanglement

The Quantum Era of Accelerated Discovery

Dario Gil, Ph.D.
Director of IBM Research

Bit vs Qubit

Classical bit

Qubit

Superposition

$$
|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}
$$

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}
$$

Measurement

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}
$$

$$
\begin{aligned}
& p_{0}=\langle\psi \mid 0\rangle\langle 0 \mid \psi\rangle=|\langle 0 \mid \psi\rangle|^{2}=|\alpha|^{2}, \\
& p_{1}=\langle\psi \mid 1\rangle\langle 1 \mid \psi\rangle=|\langle 1 \mid \psi\rangle|^{2}=|\beta|^{2} \text {. }
\end{aligned}
$$

Unitary operation

$$
U^{\dagger} U=U U^{\dagger}=\mathbb{1}
$$

Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Entanglement

Multiple qubits

superposition of 2^{n} basis states

Entanglement

Measurement

Measurement

How to program a quantum computer?

QISKit: Basic workflow

At the highest level, quantum programming in QISKit is broken up into three parts:

1. Building quantum circuits
2. Compiling quantum circuits to run on a specific backend
3. Executing quantum circuits on a backend and analyzing results

Important: Step 2 (compiling) can be done automatically so that a basic user only needs to deal with steps 1 and 3.

Quantum Program

[^1]
QISKit: Basic workflow

At the highest level, quantum programming in QISKit is broken up into three parts:

[python3] \$ pip install qiskit

```
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, Aer, execute
q = QuantumRegister(2)
c = ClassicalRegister(2)
qc = QuantumCircuit(q, c)
qc.h(q[0])
qc.cx(q[0], q[1])
qc.measure(q, c)
backend = Aer.get_backend('qasm_simulator')
job_sim = execute(qc, backend)
sim_result = job_sim.result()
print(sim_result.get_counts(qc))
```


Quantum circuit

Quantum circuit

The Quantum Era of Accelerated Discovery

Dario Gil, Ph.D.
Director of IBM Research

https://youtu.be/zOGNoD07mcU?t=905

Quantum machine learning

The Quantum Era of Accelerated Discovery

Dario Gil, Ph.D.
Director of IBM Research

Quantum machine learning

Number of papers per year

Quantum Machine Learning

- AI/ML already uses special-purpose processors: GPUs, TPUs, ASICs
- Quantum computers (QPUs) could be used as special-purpose Al accelerators
- May enable training of previously intractable models

New Al models

- Quantum computing can also lead to new machine learning models
- Examples currently being studied are:

- Kernel methods
- Boltzmann machines
- Tensor Networks
- Variational circuits

- Quantum Neural Networks

QML at MindLab

Journal of the Physical Society of Japan 90, 044002 (2021)
https://doi.org/10.7566/JPSJ. 90.044002

Classification with Quantum Measurements

Fabio A. González ${ }^{1 *}$, Vladimir Vargas-Calderón ${ }^{2}$, and Herbert Vinck-Posada ${ }^{2}$
${ }^{1}$ MindLab Research Group, Departamento de Ingeniería de Sistemas e Industrial, Universidad Nacional de Colombia,
Bogotá, Colombia
${ }^{2}$ Grupo de Superconductividad y Nanotecnología, Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia

Training

Prediction

QML at MindLab

Implementation in Qiskit

Training state preparation

Prediction

Execution results

QML at MindLab

 Implementation in Qiskit

Exact circuit
simulator

Noisy circuit simulator

IBM Bogotá
Quantum device

[^0]: PCB with the qubit chip at 15 mK protected from the environment by multiple shields

[^1]: Panagiotis Barkoutsos - bpa@zurich.ibm.com

